D&G 的三元组

在 Deleuze & Guattari 的写作,尤其是《千高原》中,最明显的结构是一个往复三元组:to-fro-forth,oui-non-si,root-radicle-rhizome,结域-解域-再结域,纵轴-横轴-对角线,……不过以上这些例子的图案都不同。如“结域-解域-再结域”的 Z 字形,重点在再结域时引入的那点差异。对角线则涉及到维度问题 (dimension of curve)。root-radicle-rhizome 是过渡,统一→切碎的统一→碎,或者说 n-1 的关系:

Subtract the unique from the multiplicity to be constituted; write at n – 1 dimensions.

n-1 理解起来很简单,字面意思无非是指把 n 里面的 unity 给拿掉。更进一步,用数学语言来说,这样实际上有 n-1 degrees of freedom because the last element is always uniquely determined by the others. 参见下面这个问题对矩阵自由度的解释:

linear algebra – Degrees of freedom for a matrix – Mathematics Stack Exchange

记得还有个关于短篇小说的三元组,但忘记了具体,等看到再说吧。